Acta Crystallographica Section E

Structure Reports

Online
ISSN 1600-5368

Muharrem Dinçer, ${ }^{\text {a* }}$ Namık Özdemir, ${ }^{\text {a }}$ Ismail Yıldırım, ${ }^{\text {b }}$ Elif Demir ${ }^{\text {b }}$ and Samil Issık ${ }^{\text {a }}$

${ }^{\text {a }}$ Ondokuz Mayıs University, Arts and Sciences Faculty, Department of Physics, 55139 Samsun, Turkey, and ${ }^{\mathbf{b}}$ Erciyes University, Arts and Sciences Faculty, Department of Chemistry, 38039 Kayseri, Turkey

Correspondence e-mail: mdincer@omu.edu.tr

Key indicators

Single-crystal X-ray study
$T=293 \mathrm{~K}$
Mean $\sigma(\mathrm{C}-\mathrm{C})=0.006 \AA$
R factor $=0.058$
$w R$ factor $=0.133$
Data-to-parameter ratio $=13.5$
For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.
(C) 2004 International Union of Crystallography Printed in Great Britain - all rights reserved

4-Benzoyl- N -methyl-1,5-diphenyl-1 H -pyrazole-3-carboxamide

The title compound, $\mathrm{C}_{24} \mathrm{H}_{19} \mathrm{~N}_{3} \mathrm{O}_{2}$, is a derivative of 1 H -pyrazole-3-carboxylic acid. The four rings in the structure are not coplanar. The dihedral angle between the mean planes of the pyrazole ring and the carboxamide group is $26.79(3)^{\circ}$. Molecules are linked by $\mathrm{C}-\mathrm{H} \cdots \mathrm{O}, \pi-\pi$ and $\mathrm{C}-\mathrm{H} \cdots \pi$ interactions. In the latter interactions, $\mathrm{C} \cdots$ centroid distances are 3.659 (4) and 3.816 (4) \AA.

Comment

Pyrazole derivatives have been the subject of much research due to their importance in various applications and their widespread potential biological and pharmacological activities. These include antimicrobial (Mahajan et al., 1991), antiviral (Baraldi et al., 1998), antitumor (Hatheway et al., 1978; Katayama \& Oshiyama, 1997), antifungal (Chen \& Li, 1998), pesticidal (Londershausen, 1996), anticonvulsant (Lepage \& Hublot, 1992), antihistaminic (Mishra et al., 1998) and antidepressant activities (Bailley et al., 1985). The reaction of 4-benzoyl-5-phenyl-2,3-dihydro-2,3-furandione with various phenylhydrazones and phenylhydrazine leads to 4-benzoyl-1,5-diphenyl- 1 H -pyrazole-3-carboxylic acid (Akçamur et al., 1986) and pyridazinones (Akçamur et al., 1997; Verirşen \& Erturan, 1998; Şener et al., 2002; Dinçer et al., 2004). 4-Aroyl-5-aryl-2,3-dihydro-2,3-furandiones represent easily accessible building blocks for the synthesis of heterocyclic systems (Terpetschnig et al., 1991; Yıldırım \& İlhan, 1997; Hökelek et al., 2002). We describe here the crystal structure of the title compound, (I), as determined by an X-ray crystallographic analysis.

(I)

The structure of (I) (Fig. 1) contains one pyrazole ring (ring A : $\mathrm{N} 1 / \mathrm{N} 2 / \mathrm{C} 1 / \mathrm{C} 2 / \mathrm{C} 3$) with a carboxamide group (O1/C4/N3/ C 5) substituted at C 3 and three phenyl rings (ring B : $\mathrm{C} 7-\mathrm{C} 12$; ring C : $\mathrm{C} 13-\mathrm{C} 18$; ring $D: \mathrm{C} 19-\mathrm{C} 24$) substituted at $\mathrm{C} 2, \mathrm{C} 1$ and N 2 , respectively. Ring B is attached to the pyrazole ring by a keto group. All four rings are essentially planar. The maximum deviation of the pyrazole ring from planarity is 0.003 (3) \AA for atom N1. The four rings are not coplanar. The plane of the pyrazole ring makes dihedral angles of 59.4 (2),

Received 14 April 2004 Accepted 29 April 2004 Online 8 May 2004

Figure 1
An ORTEP-3 (Farrugia, 1997) drawing of the title compound, (I), showing the atomic numbering scheme. Displacement ellipsoids of non-H atoms are drawn at the 50% probability level. The intramolecular $\mathrm{N}-$ $\mathrm{H} \cdots \mathrm{N}$ hydrogen bond is represented by a dashed line.
$60.8(2)$ and $39.5(2)^{\circ}$ with the planes of rings B, C and D, respectively.

The carboxamide group is also planar within 0.008 (3) \AA and twisted by 26.79 (3) ${ }^{\circ}$ out of the mean plane of the pyrazole ring, corresponding to an axial position with respect to the pyrazole ring. The $\mathrm{C} 5-\mathrm{N} 3-\mathrm{C} 4-\mathrm{C} 3$ torsion angle is $178.0(3)^{\circ}$ and corresponds to a (+)antiperiplanar configuration. The $\mathrm{N} 1-\mathrm{N} 2$ bond length is 1.370 (4) \AA, close to the value found in the literature (Dinçer et al., 2004).

Fig. 1 shows the molecular structure of (I) with the atomic numbering scheme. The packing of (I) is determined by a combination of $\mathrm{C}-\mathrm{H} \cdots \mathrm{O}, \pi-\pi$ and $\mathrm{C}-\mathrm{H} \cdots \pi$ (phenyl) interactions (Table 2). An intramolecular $\mathrm{N}-\mathrm{H} \cdots \mathrm{N}$ hydrogen bond results in a five-membered ring (N1/C3/C4/N3/H3) fused to the pyrazole ring. The crystal structure has one intermolecular interaction in which atom C 5 acts as donor to the symmetry-related atom O 2 at $\left(x, \frac{1}{2}-y, z-\frac{1}{2}\right)$, with a $\mathrm{C} \cdots \mathrm{O}$ distance of 3.506 (5) A. Weak intermolecular $\pi-\pi$ stacking interactions between ring B and its symmetry partner at $(2-x, 1-y,-z)$ are observed, with a distance of 3.953 (2) \AA between the ring centroids and a perpendicular distance of 3.775 (2) \AA. In addition to these interactions, the crystal structure is also stabilized by two $\mathrm{C}-\mathrm{H} \cdots \pi$ (phenyl) interactions. In the first of these, atom C 10 in the molecule at (x, y, z) forms a $\mathrm{C}-\mathrm{H} \cdots \pi$ contact with the centroid ($C g 3$) of ring C of the molecule at $(2-x, 1-y,-z)$. In the second, atom C 8 in the molecule at (x, y, z) forms a $\mathrm{C}-\mathrm{H} \cdots \pi$ contact with the centroid (Cg4) of ring D of the molecule at ($x, \frac{1}{2}-y, z-\frac{1}{2}$).

Experimental

A solution of methylamine hydrochloride ($0.10 \mathrm{~g}, 1.50 \mathrm{mmol}$) in 20 ml of triethylamine was added slowly, dropwise, to a solution of 4-benzoyl-1,5-diphenyl-1 H -pyrazole-3-carboxylic acid chloride $(0.50 \mathrm{~g}$,
1.30 mmol), obtained easily from 4-benzoyl-5-phenyl-2,3-dihydro-2,3-furandione and phenylhydrazine. Thionyl chloride (Akçamur et al., 1997) in 30 ml of carbon tetrachloride was then added and stirred, with cooling in ice, for 12 h . After evaporation, the oily residue was treated with cyclohexane and the resulting white crude product was filtered off and recrystallized from 2-propanol and dried over $\mathrm{P}_{2} \mathrm{O}_{5}$ (yield $0.13 \mathrm{~g}, 27 \%$; m.p. 415 K). Analysis calculated for $\mathrm{C}_{24} \mathrm{H}_{19} \mathrm{~N}_{3} \mathrm{O}_{2}$: C 75.57, H $5.02, \mathrm{~N} 11.02 \%$; found: C 75.48 , H 5.09 , N 10.97%.

Crystal data

$\mathrm{C}_{24} \mathrm{H}_{19} \mathrm{~N}_{3} \mathrm{O}_{2}$
$M_{r}=381.42$
Monoclinic, $P 2_{1} / c$

$$
a=8.6587(10) \AA \text { 。 }
$$

$b=20.5881$ (19) A
$c=11.0082(13) \AA$
$\beta=100.187$ (9) ${ }^{\circ}$
$V=1931.5$ (4) \AA^{3}
$Z=4$
$D_{x}=1.312 \mathrm{Mg} \mathrm{m}^{-3}$
Mo $K \alpha$ radiation
Cell parameters from 6124
\quad reflections
$\theta=2.0-26.3^{\circ}$
$\mu=0.09 \mathrm{~mm}^{-1}$
$T=293(2) \mathrm{K}$
Prism, colorless
$0.29 \times 0.17 \times 0.09 \mathrm{~mm}$

Data collection

Stoe IPDS-II diffractometer

ω scans

Absorption correction: by
integration (X-RED32;
Stoe \& Cie, 2002)
$T_{\text {min }}=0.983, T_{\text {max }}=0.992$
20198 measured reflections

> 3400 independent reflections 1440 reflections with $I>2 \sigma(I)$
> $R_{\text {int }}=0.107$
> $\theta_{\max }=25.0^{\circ}$
> $h=-10 \rightarrow 10$
> $k=-24 \rightarrow 24$
> $l=-13 \rightarrow 13$

Refinement

Refinement on F^{2}
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.058$
$w R\left(F^{2}\right)=0.133$
$S=1.01$
3400 reflections
251 parameters
H-atom parameters constrained
$w=1 /\left[\sigma^{2}\left(F_{o}{ }^{2}\right)+(0.0427 P)^{2}\right]$
where $P=\left(F_{o}{ }^{2}+2 F_{c}{ }^{2}\right) / 3$
$(\Delta / \sigma)_{\max }<0.001$
$\Delta \rho_{\text {max }}=0.49 \mathrm{e}^{\text {max }}{ }^{-3}$
$\Delta \rho_{\min }=-0.67 \mathrm{e}^{-3}$
Extinction correction: SHELXL
Extinction coefficient: 0.0091 (11)

Table 1
Selected geometric parameters ($\left({ }^{\circ},{ }^{\circ}\right)$.

$\mathrm{O} 1-\mathrm{C} 4$	$1.204(4)$	$\mathrm{C} 1-\mathrm{C} 2$	$1.380(4)$
$\mathrm{O} 2-\mathrm{C} 6$	$1.224(4)$	$\mathrm{C} 1-\mathrm{C} 13$	$1.473(5)$
$\mathrm{N} 1-\mathrm{C} 3$	$1.332(4)$	$\mathrm{C} 2-\mathrm{C} 3$	$1.402(5)$
$\mathrm{N} 2-\mathrm{C} 1$	$1.372(4)$	$\mathrm{C} 2-\mathrm{C} 6$	$1.488(5)$
$\mathrm{N} 2-\mathrm{C} 19$	$1.439(4)$	$\mathrm{C} 3-\mathrm{C} 4$	$1.480(5)$
$\mathrm{N} 3-\mathrm{C} 4$	$1.304(4)$	$\mathrm{C} 6-\mathrm{C} 7$	$1.487(5)$
$\mathrm{N} 3-\mathrm{C} 5$	$1.434(4)$		
$\mathrm{C} 3-\mathrm{N} 1-\mathrm{N} 2$	$103.9(3)$	$\mathrm{N} 1-\mathrm{C} 3-\mathrm{C} 4$	$119.3(3)$
$\mathrm{N} 1-\mathrm{N} 2-\mathrm{C} 1$	$112.3(3)$	$\mathrm{C} 2-\mathrm{C} 3-\mathrm{C} 4$	$127.6(3)$
$\mathrm{C} 4-\mathrm{N} 3-\mathrm{C} 5$	$118.0(3)$	$\mathrm{O} 1-\mathrm{C} 4-\mathrm{N} 3$	$124.4(3)$
$\mathrm{N} 2-\mathrm{C} 1-\mathrm{C} 2$	$106.1(3)$	$\mathrm{O} 1-\mathrm{C} 4-\mathrm{C} 3$	$121.9(4)$
$\mathrm{C} 1-\mathrm{C} 2-\mathrm{C} 3$	$105.1(3)$	$\mathrm{N} 3-\mathrm{C} 4-\mathrm{C} 3$	$113.6(3)$
$\mathrm{C} 1-\mathrm{C} 2-\mathrm{C} 6$	$127.3(3)$	$\mathrm{O} 2-\mathrm{C} 6-\mathrm{C} 7$	$121.0(4)$
$\mathrm{C} 3-\mathrm{C} 2-\mathrm{C} 6$	$127.5(3)$	$\mathrm{O} 2-\mathrm{C} 6-\mathrm{C} 2$	$119.7(4)$
$\mathrm{N} 1-\mathrm{C} 3-\mathrm{C} 2$	$112.6(3)$	$\mathrm{C} 7-\mathrm{C} 6-\mathrm{C} 2$	$119.3(4)$

Table 2
Hydrogen-bonding geometry $\left(\AA,{ }^{\circ}\right)$.

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{~N} 3-\mathrm{H} 3 \cdots \mathrm{~N} 1$	0.86	2.41	$2.723(4)$	102
$\mathrm{C} 5-\mathrm{H} 5 A \cdots \mathrm{O} 2^{\mathrm{i}}$	0.96	2.56	$3.506(5)$	170
$\mathrm{C} 10-\mathrm{H} 10 \cdots \mathrm{Cg}^{\text {ii }}$	0.93	2.83	$3.659(4)$	149
$\mathrm{C} 8-\mathrm{H} 8 \cdots \mathrm{Cg}^{\text {iii }}$	0.93	3.06	$3.816(4)$	139

Symmetry codes: (i) $x, \frac{1}{2}-y, z-\frac{1}{2}$; (ii) $2-x, 1-y,-z$; (iii) $x,-\frac{1}{2}-y, z-\frac{3}{2}$. Cg3 and $C g 4$ are the centroids of rings C and D, respectively.

H atoms were positioned geometrically and treated using a riding model, with an $\mathrm{N}-\mathrm{H}$ distance of $0.86 \AA$, and $\mathrm{C}-\mathrm{H}$ distances of $0.93 \AA$ for phenyl H atoms and $0.96 \AA$ for methyl H atoms. The displacement parameters of the H atoms were included as $U_{\text {iso }}(\mathrm{H})=$ $1.2 U_{\text {eq }}\left(\right.$ carrier atom) $\left[1.5 U_{\text {eq }}(\mathrm{C})\right.$ for methyl H atoms].

Data collection: X-AREA (Stoe \& Cie, 2002); cell refinement: X-AREA; data reduction: X-RED32 (Stoe \& Cie, 2002); program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: WinGX (Farrugia, 1999).

This study was supported financially by the Research Center of Ondokuz Mayis University and the Research Center of Erciyes University.

References

Akçamur, Y., Penn, G., Ziegler, E., Sterk, H., Kollenz, G., Peters, K., Peters, E.-M. \& von Schnering, H. G. (1986). Monatsh. Chem. 117, 231-245.

Akçamur, Y., Şener, A., İpekoğlu, A. M. \& Kollenz, G. (1997). J. Heterocycl. Chem. 34, 221-224.
Bailley, D. M., Hansen, P. E., Hlavac, A. G., Baizman, E. R., Pearl, J., Defelice, A. F. \& Feigenson, M. E. (1985). J. Med. Chem. 28, 256-263.

Baraldi, P. G., Manfredini, S., Romagnoli, R., Stevanato, L., Zaid, A. N. \& Manservigi, R. (1998). Nucleosides Nucleotides, 17, 2165-2171.
Chen, H. S. \& Li, Z. M. (1998). Chem. J. Chin. Univ. 19, 572-576.
Dinçer, M., Özdemir, N., Yıldırım, İ., Demir, E., Akçamur, Y. \& Işık, Ş. (2004). Acta Cryst. E60, o317-o319.
Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.
Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.
Hatheway, G. J., Hansch, C., Kim, K. H., Milstein, S. R., Schimidt, C. L., Smith, R. N. \& Quinn, F. R. (1978). J. Med. Chem. 21, 563-567.

Hökelek, T., Sarıp.inar, E., Yıldırım, İ., Akkurt, M., Akçamur, Y. (2002). Acta Cryst. E58, o30-o32.
Katayama, H. \& Oshiyama, T. (1997). Can. J. Chem. 75, 913-919.

Figure 2
Fig. 2. An ORTEP-3 (Farrugia, 1997) drawing of the crystal structure of (I), showing $\mathrm{C}-\mathrm{H} \cdots \mathrm{O}, \pi-\pi$ and $\mathrm{C}-\mathrm{H} \cdots \pi$ intermolecular interactions as dashed lines.

Lepage, F. \& Hublot, B. (1992). Eur. Pat. Appl. EP 459 887; Chem. Abstr. 116, 128917.

Londershausen, M. (1996). Pestic. Sci. 48, 269-274.
Mahajan, R. N., Havaldar, F. H. \& Fernandes, P. S. (1991). J. Indian Chem. Soc. 68, 245-249.
Mishra, P. D., Wahidullah, S. \& Kamat, S. Y. (1998). Indian J. Chem. Sect. B, 37, 199.

Şener, A., Kasımoğulları, R., Şener, M. K., Bildirici, İ. \& Akçamur, Y. (2002). J. Heterocycl. Chem. 39, 869-875.

Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.
Stoe \& Cie (2002). X-AREA (Version 1.18) and X-RED32 (Version 1.04). Stoe \& Cie, Darmstadt, Germany.
Terpetschnig, E., Pen, G., Kollenz, G., Peters, K., Peters, E.-M. \& von Schnering, H. G. (1991). Tetrahedron, 47, 3045-3058.
Verirşen, M. \& Erturan, S. (1998). Turk. J. Chem. 22, 335-340.
Yıldırım, İ. \& İlhan, İ. Ö. (1997). J. Heterocycl. Chem. 34, 1047-1051.

